Classical conditioning in an immersive 3D interactive environment

Project Presentation
BCBT13

Roberta Bardini
Ryszard Cetnarski
Riccardo Zucca
Alberto Betella
Introduction

Experiments on human cognition and behavior are normally conducted under controlled lab conditions.

Virtual Reality allows to:
- setup ecologically valid environments;
- control systematically the stimuli presented;
- measure the user’s (implicit and explicit) reactions.
The question

1. Can we reproduce a standard classical conditioning experiment in life-like conditions?

2. Is it possible to “transfer” the conditioning effects to the natural world?

Pavlov, 1927; Stuart et al. 1987; Elnora et al. 1990, Huff et al. 2010
Methods: the XIM

The eXperience Induction Machine is an immersive space equipped with a number of sensors and effectors to conduct experiments on human behaviour in ecologically valid conditions.
Methods: the IAPS database

The International Affective Picture System (IAPS) is a database of pictures used to elicit a range of emotions (Bradley et al., 1997).

The images are classified on the basis of self-assessment reports of hundreds of participants.
Methods: the sensing glove

We used a prototype wearable sensing glove that:

• records the subject’s EDA;
• detects single-finger movements (e.g. grabbing).

ElectroDermal Activity is a measure of the sweat gland activity, directly controlled by Sympathetic Nerve Activity (SNA) [Fowles et al. 1981, Boucsein et al. 2011], that allows to monitor the Autonomic Nervous System (ANS).
Experimental design: Self-Assessment of emotions

SAM QUESTIONNAIRE

(However) SAM presents some limitations:
• Low resolution scales (7 or 9 points)
• Images can be confusing
• Dominance not always clear
Experimental design: Self-Assessment of emotions

The Affective Slider

- Measures Valence ("Positivity") and Arousal ("Excitement")
- High resolution scale (from 0 to 1 with .01 step)
- Use of cool and warm color gradients to convey respectively Valence and Arousal.
The 3D virtual world
The 3D virtual world
Experimental setup: protocol

Olson et al. 2002
Experimental design: overview

H1 = the subjects undergo conditioning after being exposed to the experiment in the XIM, subsequently the conditioning effect is transferred in the natural world.

Independent samples design:
- 1 control group
- 1 experimental group

Variables:
- Independent: cues and stimuli in the virtual world.
- Dependent: self-assessment questionnaire, EDA.

Sample: 4 Subjects (1 female, mean age 26.3 +/- 4SD). 30 Trials per subject
Experimental design: cues and stimuli

Cues

Stimuli
Images from the IAPS database with:
- high arousal, low valence (experimental group)
- low arousal (control group)
Experimental setup

A participant in the XIM while exposed to the conditioning experiment
Results: self-assessment

Self-Assessed Arousal associated to the negative cue is significantly higher in the experimental group when compared to the control group ($p < .05$) *

* The result accounts for a minimal trend: the distribution of trials and the sample size are not sufficient for statistical inference.
Results: EDR

Electrodermal response recorded from one subject exposed to the experimental condition in the XIM. N.B. Presence of artifacts due to the grabbing
Discussion

- Preliminary results are promising
- Some issues in the Unity Application
- (A new experiment with) A larger sample is needed
- Psychophysiological data recorded from the glove (EDR) must be cleaned to remove artifacts and analyzed
Future improvements

- Improve the VR application
- Expose subjects to the conditioning objects in the natural world after the experiment (and measure their EDA).