European Journal of Neuroscience, in press, accepted 23rd of July 2002

The Cerebellum in Action: A Simulation and Robotics Study

Constanze Hofstötter,
connie@ini.phys.ethz.ch
Institute of Neuroinformatics, University and ETH Zurich, Switzerland

Matti Mintz,
mintz@freud.tau.ac.il
Psychobiology Research Unit, Department of Psychology, Tel-Aviv University, Israel

and Paul F.M.J. Venshure,
pfmjv@ini.phys.ethz.ch
Institute of Neuroinformatics, University and ETH Zurich, Switzerland

• corresponding author:
Constanze Hofstötter
Institute of Neuroinformatics, University and ETH Zurich
Winterthurerstr. 190, CH-8057 Zurich, Switzerland
Phone: +41 1 635 30 26
Fax: +41 1 635 30 53
1 INTRODUCTION

Abstract

The control or prediction of the precise timing of events is a central aspect of the many tasks assigned to the cerebellum. Despite much detailed knowledge on its physiology and anatomy it remains unclear how the cerebellar circuitry could realize such an adaptive timing function. We present a computational model to pursue this question for one extensively studied type of cerebellar mediated learning: the classical conditioning of discrete motor responses. This model combines multiple current assumptions on the function of the cerebellar circuitry and was used to investigate if plasticity in the cerebellar cortex alone can mediate adaptive conditioned response timing. In particular, we studied the effect of changes in the strength of the synapses formed between parallel fibers and Purkinje cells under the control of a negative feedback loop formed between inferior olive, cerebellar cortex and cerebellar deep nuclei. The learning performance of the model was evaluated at the circuit level in simulated conditioning experiments as well as at the behavioral level using a mobile robot. We demonstrate that the model supports adaptively timed responses under real-world conditions. Thus, in contrast to many other models that have focused on cerebellar mediated conditioning, we investigated if and how the suggested underlying mechanisms could scale up to behavioral phenomena.

1 Introduction

The classical conditioning paradigm was introduced by Pavlov in the early 20th century to study associative learning [Pavlov, 1927, Pavlov, 1928]. If an initially neutral stimulus (conditioned stimulus, CS) is repeatedly presented paired with a motivational stimulus (unconditioned stimulus, US) which elicits a certain response (unconditioned response, UR), the CS will eventually trigger a similar response (conditioned response, CR). During training the CS and US are usually presented with a fixed interstimulus interval (ISI) and the acquired CR reaches its peak amplitude (e.g. measured as strength of the EMG for conditioned motor responses) just before the expected US. Hence, the CR reflects knowledge about an association between CS and US and their temporal relationship.

Classical conditioning of discrete motor responses, such as the eyeblink response, has been studied extensively over many decades [Gormezano et al., 1983] and multiple lines of evidence illustrate the central role of the cerebellum in this type of learning [Thompson et al., 1983, Lavond et al., 1993]. The pathways for CS, US, and CR have been identified [Kim and Thompson, 1997, Thompson et al., 1998], but the relative contribution of the cerebellar cortex and the deep nuclei remains difficult to assess [Welsh and A., 1989, Attwell et al., 2001, Mauk, 1997]. Synaptic changes in both sites seem to be in-
olved in classical conditioning, but may affect different properties of the CR [Raymond et al., 1996]. It has been suggested that plasticity in the cerebellar nuclei is permissive for the CR expression while plasticity in the cerebellar cortex controls the CR timing [Perret, 1998, Ohyama and Mauk, 2001, Bao et al., 2002].

In this paper we present a neural model of the cerebellar circuitry to investigate whether plasticity in the cortex alone is sufficient to adaptively control the timing of CRs. Our model includes five assumptions:

- Inferior olive, cerebellar cortex and deep nucleus are organized in distinct microcomplexes [Ito, 2001] which constitute negative feedback loops [Thompson et al., 1998].

- Plasticity in the cerebellar cortex is controlled by these olivo-cortico-nuclear feedback loops [Hesslow and Ivarsson, 1996].

- Induction of long-term depression (LTD) [Ito and Kano, 1982] and long-term potentiation (LTP) [Salin et al., 1996] of the synapses formed between parallel fibers and Purkinje cells depends on US-related climbing fiber and CS-related parallel fiber activation. Purkinje cell dendrites function as asymmetric coincidence detectors for these signals [Fiala et al., 1996, Wang et al., 2000].

- The training procedure leads to a pause in Purkinje cell activity following CS-presentation [Houk et al., 1996, Hesslow and Ivarsson, 1994, Medina and Mauk, 2000].

- A CR is triggered by rebound excitation in the deep nucleus upon release from Purkinje cell inhibition [Hesslow, 1994b, Hesslow, 1994a, Aizenman and Linden, 1999].

In addition, we assume that Purkinje cells operate in two distinct modes: a spontaneous and a CS-driven mode.

The relationship between the model’s parameters and its learning performance was studied in simulated conditioning experiments. For behaviorists, learning is defined as long-lasting change in behavior resulting from experiences [Mackintosh, 1974] and can as such only be inferred from observing the interaction of a behaving system with its environment [Webb, 2000]. Therefore, we also evaluated the learning performance of the model by studying the behavior of a mobile robot in an obstacle avoidance task. Examining the behavior of the robot allowed us to determine whether the assumptions embedded in the model can account for associative learning under more realistic conditions [Verschure and Voigtlin, 1999, Verschure, 1998], i.e. when the occurrence of CS and US is not controlled by an experimenter but caused solely by the interaction of the learning system with its environment.
2 Theoretical Background

While it is generally accepted that the cerebellum is critically involved in the classical conditioning of discrete motor responses, the relative contribution of the two sites where CS- and US-related inputs converge, i.e. cerebellar cortex and deep nuclei, is unresolved [Krupa and Thompson, 1997, Mauk, 1997]. For instance, Mauk and associates demonstrated that aspiration lesions of the deep nuclei completely abolish CR expression, while lesions of the cortex result in non adaptive, short-latency CRs, respectively [Perrett et al., 1993, Perrett and Mauk, 1995] (however see [Attwell et al., 2001, Linas et al., 1997]). Based on these findings it has been suggested that plasticity in the cerebellar cortex and cerebellar deep nuclei serve different functions [Raymond et al., 1996]. The latent learning hypothesis states that temporal specific learning occurs initially in the cerebellar cortex, but that a CR can only be elicited after synaptic changes driven by cortical output occurred in the deep nucleus [Ohyama and Mauk, 2001]. Most recent findings are consistent with the hypothesis that the cerebellar cortex may play a crucial role in the adaptation of the CR timing, [Svensson and Ivarsson, 1999, Hesslow et al., 1999, Bao et al., 2002, Perret, 1998], while synaptic changes in the deep nucleus serve to enhance a CR [Gruart et al., 2000]. The goal of our modeling study was to investigate if synaptic changes within the cerebellar cortex alone are sufficient to support stable CR timing when examined in the context of other aspects of the cerebellar circuit and physiology. This section describes the biological findings that led to the assumptions embedded in our model and illustrates how these different components of cerebellar mediated learning contribute to mediate CR timing (Fig. 1).

Insert Fig. 1 about here.

2.1 The negative feedback loop within the cerebellar microcircuit

The most extensively studied example of cerebellar mediated conditioning is the acquisition and extinction of the eyelid or nictitating membrane response (NMR) [Gormezano et al., 1983]. In this conditioning paradigm a tone CS predicts the occurrence of a corneal air puff or periorbital shock US. Parts of HVI lobule cortex, anterior parts of the interpositus nucleus and the medial part of rostral dorsal accessory olive are involved in the conditioning of the NMR [Yeo et al., 1985a, Yeo et al., 1985b, Yeo et al., 1986]. Functionally these regions form a microcomplex [Ito, 1984, Ito, 2001]. Our model describes the minimal computational unit within such a microcomplex, a microcircuit comprising one Purkinje cell and its
peripheral afferents and efferents (see also [Barto et al., 1999]). For clarity and brevity, we will use abbreviations when referring to model elements. A Purkinje cell (PU) receives CS- and US-related signals via parallel fibers (pf) and climbing fibers (cf), respectively [Steinmetz et al., 1986, Steinmetz et al., 1989]. Activity in the deep nucleus (DN) activates motor nuclei via the red nucleus and predicts the amplitude-time course of the motor CR [McCormick and Thompson, 1984, Rogers et al., 2001] (however see [Gruart et al., 2000]). Distinct cell groups in the inferior olive, cerebellar cortex and deep nuclei are interconnected and form negative feedback loops [Hesslow and Ivarsson, 1996, Ito, 2001]. It has been demonstrated that inhibition of the inferior olive by the deep nucleus can prevent climbing fiber responses to a US [Kim et al., 1998]. Thus, the output of the deep nucleus may control the reinforcing US pathway [Thompson et al., 1998]. We address the question of how the negative feedback loop formed between IO-PU-DN affects learning related plasticity in the cerebellar cortex.

2.2 Synaptic plasticity in the cortex

While various kinds of plasticity in the cerebellar cortex have been described (for a review see [Hansel et al., 2001]), the best studied form is the long-term depression (LTD) of the synapse formed between parallel fibers and Purkinje cells [Linden and Conner, 1995, Ito, 2001]. It has long been suggested that this type of plasticity plays a crucial role in motor learning [Albus, 1971, Ito and Kano, 1982]. More recently, some evidence has been presented for the long-term potentiation (LTP) of the same synapse [Salin et al., 1996, Linden and Ahn, 1991]. LTD and LTP of the parallel fiber to Purkinje cell synapse are often assumed to constitute the crucial synaptic mechanism of cerebellar mediated learning [Mauk et al., 1998], [Medina et al., 2000, Barto et al., 1999, Gluck et al., 2001] and were therefore included in our model.

Because only a certain range of ISIs leads to behavioral conditioning, the underlying learning mechanism must respond asymmetrically to the occurrence of CS and US [Montague and Sejnowski, 1994]. For example, using the delay conditioning paradigm, the NMR can be learned only when the CS precedes the US by about 0.07 s to 3 s [Gormezano et al., 1983]. It has been shown that the induction of LTD depends on the temporal relationship of parallel fiber and climbing fiber stimulation [Ito, 2001]. Although the precise induction properties vary for different preparations, several studies have reported that LTD is strongest if the parallel fiber stimulation precedes the climbing fiber stimulation by 80 ms to 250 ms [Schreurs et al., 1996, Chen and Thompson, 1995], i.e. intervals which fall within the range the range of behaviorally effective ISIs.
However, such temporal induction properties for LTD require some persistent trace of the parallel fiber stimulation to allow for coupling with climbing fiber stimulation [Linden and Conner, 1995, Sutton and Barto, 1990]. A prolonged metabolic second messenger response in Purkinje cells following parallel fiber stimulation could constitute such a trace [Fiala et al., 1996]. The induction of LTD may depend on the coincidence of responses to the second messenger inositol 1,4,5-triphosphate (IP3) as a result of parallel fiber activity and postsynaptic depolarization or Ca^{2+} entry following climbing fiber activity [Miyata et al., 2000]. Single spines of Purkinje cells could serve as coincidence detectors of CS- and US-related responses [Wang et al., 2000]. It has been suggested that there is a negative correlation between the postsynaptic Ca^{2+} concentration and the changes in the efficacy of the synapses formed between parallel fibers and Purkinje cells following parallel fiber stimulation [Hartell, 2002, Shibuki and Okada, 1992]. Hence, functionally LTD and LTP can be interpreted as antagonistic processes. However, since in the cerebellum LTD is a postsynaptic mechanism while LTP occurs presynaptically, it is unclear to what extent LTD and LTP can truly reverse each other at the molecular level [Ito, 2001, Kitazawa, 2002]. In our model we implemented a functional approximation of these mechanisms underlying LTD and LTP at the parallel fiber to Purkinje cell synapse (see Fig. 1.B and 1.C), where LTD results from coincident pf- and cf-activation, while LTP results from pf-stimulation alone [Hansel et al., 2001].

2.3 Nuclear release from cortical inhibition

Purkinje cell inhibition forms the sole output of the cerebellar cortex. Thus, if the adaptive timing of the CR depends on the cerebellar cortex there needs to be a mechanism that allows the inhibitory Purkinje cell output to control the timing of excitatory responses in the deep nucleus. Purkinje cells are spontaneously active [Raman and Bean, 1999] supplying tonic inhibition to the deep nucleus. The activity pattern of Purkinje cells is altered during conditioning [Schreurs et al., 1998] and some cells show a reduced firing rate to a CS following conditioning [Hesslow and Ivarsson, 1994]. Cells in the deep nuclei show a characteristic feature called rebound excitation following their disinhibition [Hesslow, 1994b]. In particular, a hyperpolarizing pulse deinactivates low-threshold voltage-gated Ca^{2+} channels [Aizenman et al., 1998]. Upon the release of inhibition these channels mediate the repolarization of the membrane potential which is followed by a burst of Na^+ spikes. This suggests that a timed pause in Purkinje cell spiking could control the timing of rebound excitation [Aizenman and Linden, 1999]. Thus, synaptic changes affecting Purkinje cell responses to a CS, could control the timing of motor CRs [Gauk and Jaeger, 2000, Medina et al., 2000]. Based on this assumption, we implemented synaptic
changes in our model which alter the excitatory response of \(PU \) to a presented CS. During a pause in \(PU \) spiking, \(DN \) repolarizes and can trigger a CR.

2.4 Stimulus representation and CS-trace

To allow for the expression of a CR adapted to the ISI the temporal relationship of CS and US needs to be encoded. Little is known about the mechanism used in the nervous system to encode time. A recent study demonstrated that individual animals can produce differently timed CRs when stimulation of the same subset of mossy fibers (CSs) is paired with an eye-shock US at various ISIs [Perret, 1998]. Even a single-pulse CS can lead to the acquisition of differently timed CRs. These findings indicate that precerebellar pathways are not necessary for maintaining the neural activity to elicit a CR and that the representation of time does not require the recruitment of different mossy fibers by the CS. Mossy fiber activity related to the onset of the CS may thus be sufficient to support correct CR timing. Similarly, climbing fibers fire at ultra-low frequencies (around 1 Hz) and could not encode the duration of the US [De Zeeuw et al., 1998, Kuroda et al., 2001]. Based on these findings, we therefore only represented the onset of CS and US as neural activity in our model. Thus, in contrast to many other models on cerebellar information processing (see e.g. [Kawato, 1999, Huang et al., 2000, Medina et al., 2000]) our model does not depend on complex assumptions regarding the encoding of the sensory stimuli.

Various models have been proposed for the putative mechanism underlying the representation of time by the cerebellum, such as tagged elements or delay lines [Braitenberg and Atwood, 1958, Moore and Choi, 1997], a time varying representation of the CS within the cortex [Mauk, 1997], or oscillatory signals [Glück et al., 2001] and delayed reverberation [Kistler and van Hemmen, 1999]. For most of these hypotheses there is no profound physiological evidence, or it has been demonstrated that the biological substrate would not meet the requirements for the suggested mechanism. For example, a signal traveling along parallel fibers will not be delayed by up to several seconds as required for parallel fibers to constitute delay lines encoding the complete range of ISIs [MacKay and Murphy, 1976]. In our model the prolonged responses in \(PU \) dendrites constitute a CS-trace allowing for the association of CS and US, which is supported by physiological studies [Wang et al., 2000]. This internal representation of the CS has a different time course than the CS presented externally and relates to the concept of a stimulus trace suggested by Hull [Hull, 1939]. The notion of an eligibility trace has been used [Sutton and Barto, 1990, Barto et al., 1999] to describe that synapses which have been activated by a CS-related input remain eligible to US-induced weight changes for some period of time (see Discussion).
3 The model

Our neural model is based on the anatomy of the cerebellar microcircuit (see Fig. 2) and requires minimal assumptions on the encoding of stimuli and the representation of time. The goal of the model design was not to resemble the physiological mechanisms involved in cerebellar mediated learning as closely as possible, but to find an abstract description of the underlying principles. In this section we describe how the implementation of the model functionally accounts for the assumptions on cerebellar information processing introduced above. More details on soft- and hardware and a list of model parameters is given in the appendix.

Insert Fig. 2 about here.

3.1 Model equations

The model elements are based on a generic type of integrate and fire neuron. The summed excitatory input of neuron \(i \) at time \(t \), \(E_i(t) \), is defined as:

\[
E_i(t) = \gamma^E \sum_{j=0}^{N} A_j(t)w_{ij}(t)
\]

(1)

where \(\gamma^E \) is the excitatory gain of the input, \(N \) is the number of afferent projections, \(A_j(t) \) is the activity of presynaptic neuron \(j \in N \), at time \(t \), and \(w_{ij} \) the efficacy of the connection between the presynaptic neuron \(j \) and postsynaptic neuron \(i \).

The summed inhibitory input of neuron \(i \) at time \(t \), \(I_i(t) \), is defined as:

\[
I_i(t) = -\gamma^I \sum_{j=0}^{N} A_j(t)w_{ij}(t)
\]

(2)

where \(\gamma^I \) is the inhibitory gain of the input.

The membrane potential of neuron \(i \) at time \(t+1 \), \(V_i(t+1) \), is given by:

\[
V_i(t+1) = \beta V_i(t) + E_i(t) + I_i(t)
\]

(3)

where \(\beta \in [0, 1] \) is the persistence of the membrane potential which defines the speed of decay toward the resting state.
3 THE MODEL

The activity of an integrate and fire neuron \(i\) at time \(t\), \(A_i(t)\), is given by:

\[
A_i(t) = H(V_i(t) - \theta^A)
\]

(4)

where \(\theta^A\) is the firing threshold and \(H\) is the Heaviside function:

\[
H(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{otherwise}
\end{cases}
\]

(5)

If \(V_i\) of integrate and fire neuron \(i\) exceeds \(\theta^A\), the neuron is active and emits spikes. The duration of a spike is 1 simulation timestep and is followed by a refractory period of 1 timestep. The model elements \(PO, GR, I\) and \(IO\), representing pons, granule cells, inhibitory interneurons and inferior olive, respectively, are constructed with such generic integrate and fire neurons.

3.2 DN rebound excitation

A variant of a generic integrate and fire neuron was used to model rebound excitation of the deep nucleus, \(DN\). The membrane potential of \(DN\) neuron \(i\) at time \(t + 1\), \(V_i(t + 1)\), is given by:

\[
V_i(t + 1) = \beta V_i(t) + [H(V_i(t) - \theta^R)H(\theta^R - V_i(t - 1)) \cdot \mu] + I_i(t)
\]

(6)

where \(\theta^R\) is the rebound threshold and \(\mu\) is the rebound potential. The potential of \(DN\) is kept below \(\theta^R\) by tonic inhibitory input of \(PU\). However, when \(DN\) is disinhibited, its membrane potential slowly repolarizes. If the rebound threshold \(\theta^R\) is reached, the membrane potential is set to a fixed rebound potential \(\mu\). Subsequently the potential of \(DN\) decays and spikes are emitted as long as it is above the spiking threshold \(\theta^A\) (equation 4). The output of \(DN\) activates CRpathway and inhibits IO. This inhibition outweighs a US-related input to IO. As a result, US-related cf-activity during \(DN\) rebound activity is prevented.

3.3 A three compartment model of the Purkinje cell

The modeled Purkinje cell, \(PU\), is composed of three different compartments: \(PU-SP\) accounts for the tonic, spontaneous activity of the Purkinje cell, \(PU-SO\) represents the soma and \(PU-SYN\) represents the dendritic regions where synapses are formed with parallel fibers. \(PU-SP\) is a spontaneously active element that emits spikes unless inhibited by \(I\). \(PU-SO\) is a generic integrate and fire element and receives
excitatory input from $PU-SP$ and $PU-SYN$, and IO, reflecting cf input. The activity of $PU-SO$ forms the output of the modeled PU, inhibiting DN and activating CR pathway. The metabolic postsynaptic responses in Purkinje cell dendrites to parallel fiber stimulation are represented by $PU-SYN$. Unlike a generic integrate and fire neuron, $PU-SYN$ does not emit spikes but shows continuous dynamics according to:

$$A_i(t) = H(V_i(t) - \theta_A) \cdot V_i(t)$$ (7)

Due to a high persistence, which will be referred to as β^{SYN}, $PU-SYN$ shows a prolonged response to a CS-related pf-input according to equations 1 and 3. In our model this prolonged response constitutes the intrinsic memory trace for the CS and the eligibility trace for synaptic changes.

The weight of the synapse formed between parallel fiber and Purkinje cell, $pf-PU$-synapse, is defined as the connection strength between $PU-SYN$ and $PU-SO$ and can be altered by LTD and LTP. Synaptic changes can only be induced while there is an active stimulus trace of a CS (i.e. $A_{PU^{SYN}} > 0$). In this case, at any simulation timestep the induction of LTD and LTP depends on the summed excitatory input to $PU-SO$ (see equation 1) according to:

$$w_{ij}(t + 1) = \begin{cases}
\varepsilon w_{ij}(t) & \text{if } E_i \in [E_{LTD}^{min}, E_{LTD}^{max}] \\
w_{ij}(t) & \text{otherwise}
\end{cases}$$ (8)

$$w_{ij}(t + 1) = \begin{cases}
 w_{ij}(t + \eta(w_{ij}^{max} - w_{ij}(t))) & \text{if } E_i \in [E_{LTP}^{min}, E_{LTP}^{max}] \\
w_{ij}(t) & \text{otherwise}
\end{cases}$$ (9)

The values defining the ranges in which LTD is triggered, E_{LTD}^{max} and E_{LTD}^{min}, and the rate constant for LTD, ε, were chosen to allow exactly one strong depression event as the result of a cf-stimulus following a pf-input. The values defining the ranges in which LTP is triggered, E_{LTP}^{max} and E_{LTP}^{min}, and the rate constant for LTP, η, were chosen to allow several weak potentiation events following a pf-input. As a result, pf-stimulation alone leads to a weak net increase of the connection strength of the $pf-PU$-synapse, while pf-stimulation followed by cf-stimulation leads to a large net decrease. Thus LTD and LTP respectively decrease and increase the excitatory drive from $PU-SYN$ to $PU-SO$.

3 THE MODEL
3.4 Two response modes of the circuit

To support the learning mechanism outlined in the previous section the model needs to account for the acquisition of a pause in Purkinje cell activity following a CS, required to allow rebound excitation in the deep nucleus (see Fig. 1). For such a pause to occur, the tonic activity of Purkinje cells must be suppressed. In our model, \(PU-SP \) is suppressed by \(I \), where \(I \) represent the inhibitory interneurons in the cerebellar cortex (see Fig. 2). One central assumption of our model is that the inhibitory effect of \(I \) onto \(PU \) following pf-activation is matched to the duration of the CS-trace, i.e. as long as there is ongoing activity at \(PU-SYN \), \(I \) inhibits \(PU-SP \). Whenever there is no active CS-trace the output of \(PU \) is determined by \(PU-SP \) and supplies tonic inhibition to \(DN \). A pf-signal switches \(PU \) into a mode where its output is no longer driven by \(PU-SP \), but only by the CS-related input. Thus, the \(PU \) operates in two modes: a default, \textit{spontaneous mode} and a \textit{CS-mode}. Only in the CS-mode can synaptic changes be induced, can rebound excitation of the \(DN \) occur and thus can a CR be triggered. The properties of the model components are illustrated by cell traces before (Fig. 3.A) and after (Fig. 3.B) a CR is expressed. \textbf{In summary, we based the design and implementation of our model on several assumptions on the functioning of cerebellar components proposed in the current literature. In simulated conditioning experiments and robot studies we evaluated our hypothesis that the combination of these assumptions supports associative learning.}

Insert Fig. 3 about here.

4 Simulated conditioning experiments

The aim of the simulated conditioning experiments was to understand how central circuit parameters influence the learning performance of the model. The effect of the relative strength of LTD or LTP was studied varying the rate constant for LTD, \(\varepsilon \), or the rate constant for LTP, \(\eta \), respectively. Furthermore, circuits with different persistences of the CS-trace, i.e. varying in their value of \(PU-SYN, \beta^{SYN} \), were tested. CS and US were represented as short activations (\(A = 1 \) for 1 simulation timestep) of \textit{CSpathway} and \textit{USpathway}, respectively. Responses in \textit{CRpathway} were counted as CRs if they occurred before the presentation of the US.
4.1 Acquisition experiments

An acquisition experiment consisted of 10 blocks of 10 trials each. In the first 9 trials of a block the CS preceded a US with a fixed ISI (CS-US trials). In the last trial of a block the CS was not followed by a US (CS-alone trial).

The acquisition performance of the model is illustrated in Fig. 4 for an ISI of 100 simulation timesteps. The three curves allow a comparison of the learning performance of model circuits varying only in their value of the rate constant for LTD, ε. The acquisition curves of the three circuits show several common properties. None of the circuits elicits a CR within the first two blocks. Over the next few blocks there is a rapid increase in the percentage of elicited CRs. All circuits reach a maximum value of 100% CRs per block. Once this maximal value is reached the percentage of CRs per block fluctuates between 90% and 100%. The depicted curves approximately follow an S-shape similar to acquisition curves typically obtained in behavioural conditioning experiments [Bower and Hillgard, 1981].

When comparing the three graphs in detail it is apparent that the value of ε has a strong impact on the acquisition behavior. The maximal percentage of CRs per block (and the first CR, not explicitly shown) is expressed earlier in the training procedure for lower values of ε. Thus, the lower the chosen value of ε, the stronger the LTD (see equation 8) and the faster the acquisition of a correctly timed CR.

Insert Fig. 4 about here.

4.2 Extinction experiments

In acquisition experiments using an ISI of 100 simulation timesteps, we determined that a circuit elicits the maximal rate of CRs if the synaptic weight of the pf-PU-synapse has been reduced by LTD to 0.2052 (data not shown). In extinction experiments this value was used as initial synaptic weight and 10 blocks of 10 CS-alone trials were presented.

The extinction performance of the model is illustrated in Fig. 5 for an ISI of 100 simulation timesteps. The three curves allow a comparison of the extinction behavior for three model circuits varying only in their rate constant for LTP, η. Initially 100% CRs per block are expressed, but over a number of blocks the percentage of CRs decreases significantly until no more CRs are elicited. When comparing the three graphs in detail it is apparent that the value of η strongly influences the extinction behavior. The smaller the value of η, the later a block with less than 100% CRs occurs and the later the CR is completely
abolished. Thus, the higher the chosen value of \(\eta \), the stronger the LTP (see equation 9) and the faster the extinction of a CR.

Insert Fig. 5 about here.

4.3 Adaptation of \(PU \) response duration

The learning mechanism underlying acquisition (and extinction) can be studied in more detail by examining the adaptation of the \(PU \) response to a CS (Fig. 6). As discussed above (see Fig. 3), the persistence of the CS-trace, \(\beta^{SYN} \) defines how long \(PU \) is in the CS-mode following \(pf \)-activity. When in the CS-mode, \(PU \) in the naive circuit constantly inhibits \(DN \), but training leads to a gradual shortening of \(PU \) response duration, until a pause in \(PU \) spiking allows for \(DN \) rebound excitation to trigger a CR. Thus, the acquisition and timing of the CR is reflected by changes in the \(PU \) response duration following the CS.

The change in \(PU \) response duration is illustrated for an acquisition experiment with a training ISI of 60 simulation timesteps for three circuits varying only in their persistence of the CS-trace, \(\beta^{SYN} \) (Fig. 6.A). The initial excitatory response duration to a CS is longer for higher values of \(\beta^{SYN} \) (i.e. it lasts 65, 127, and 187 simulation timesteps for the circuits with a value of \(\beta^{SYN} \) of 0.970, 0.985 and 0.990, respectively). All curves initially show a significant reduction in the \(PU \) response duration (label 1 in Fig. 6.A). Subsequently the response duration stabilizes (label 2). The three curves eventually converge to the same response duration, i.e. 50 simulation timesteps, which allows rebound excitation of \(DN \) just before the US is presented. This reflects that the same anticipatory CR timing is acquired by all three circuits.

Fig. 6.A shows a direct relationship between the initial response duration of \(PU \) to a CS and the number of trials required to elicit a correctly timed CR. The higher the persistence of the CS-trace, \(\beta^{SYN} \), the longer the initial \(PU \) response duration to a CS, and the more the synaptic weight has to be depressed before a CR can be triggered. Therefore, if all other parameters are kept constant, the higher the value of \(\beta^{SYN} \), the more trials that are needed before the response duration of \(PU \) is adapted to a given ISI.

After the acquisition of a correctly timed CR, the response duration of \(PU \) does not have a fixed value, but fluctuates slightly (Fig. 6.B). Whenever a CS-US pair is presented and no CR is expressed,
pf- and cf-activation of PU coincide and trigger LTD. The resulting decrease in synaptic weight is reflected by a strong decrease in PU response duration (see arrow labeled LTD in Fig. 6.B). However, if a CR is expressed, DN rebound excitation which triggers the CR also inhibits IO. By this negative feedback mechanism US-related cf-activation is prevented. Consequently, the CS-US pair does not lead to coincident pf- and cf-activation of PU, but to pf-activation alone. Thus, if a correctly timed CR is expressed, the induction properties for LTP are met, not those for LTD. LTP results in a slight increase in the synaptic weight which is reflected by a gradual increase in PU response duration over trials (see arrow labeled LTP). Only when after several trials DN activity is too late to prevent US-related cf-activity, LTD is induced again. Thus, after a correctly timed CR has been acquired, there are regular fluctuations in CR latency caused by the ongoing interaction of LTD and LTP. This mechanism implies that a US cannot always be prevented although the CR timing is adapted overall to the training ISI.

Insert Fig. 6 about here.

5 Robot associative learning experiments

To analyze the performance of the model at the behavioral level, a mobile robot was interfaced to the circuit. The learning behavior of the model was evaluated by observing the behavior of the robot in an unsupervised obstacle avoidance task. In robot experiments CS and US occurrences were not controlled by an experimenter but the stimuli occurred purely as a result of the interaction of the learning system with its environment. In standard classical conditioning experiments, as well as in our simulated conditioning experiments, CS and US are presented in a fixed temporal relationship. It is unclear to what extent this constant ISI approximates the temporal relationship between CS and US under realistic conditions where fluctuations in their temporal coupling can be expected. Our robot experiments allowed us to investigate this issue.

5.1 Experimental set-up

The experiments were performed using a Khepera microrobot (K-team, Lausanne, Switzerland; Fig. 7.A). The robot was equipped with a set of basic unconditioned reflexes triggered by stimulation of the (proximal) IR sensors. Activation of these sensors (US) due to the collision with an obstacle triggered a
turn (UR) of approximately 110 degrees in the opposite direction. In addition the camera mounted on
the robot constituted a distal sensor. In a separate process, cells with receptive fields much like complex
cells in the visual cortex responded to certain spatial frequencies in the camera picture. The activity of a
cell responding to a spatial frequency of approximately 0.16 periods/degree signaled the initially neutral
CS. Visual CSs and collision USs (stimulation of two frontal IR sensors) were conveyed to C_{Sp} and U_{Sp} of the cerebellar circuit, respectively (each stimulus resulting in an activity of $A = 1$
for 1 simulation timestep). The activation of C_{R} (activity of $A = 1$ for 1 simulation timestep)
triggered a specific motor CR, i.e. a strong (approximately 150 degree) turn.

5.2 The obstacle avoidance task

The robot was placed in a circular arena with a striped border (Fig. 7.B) exploring its environment with
a constant speed. Thus, when the behavior is purely UR-driven collisions with the wall of the arena occur
regularly. A spatial frequency CS was detected at some distance when the robot approached the wall
(Fig. 8.A). Shortly afterwards, the collision with the wall stimulated the frontal IR sensors triggering a
US (Fig. 8.B). Hence, as in conditioning experiments the CS was correlated with and predicted the US.

Insert Fig. 7 about here.

Insert Fig. 8 about here.

However, the ISIs of these stimuli were not constant but showed some variability under these uncon-
trolled conditions, e.g. due to noise in sensor sampling as well as the precise angle at which the robot
approached the wall (Fig. 9). The aim of the robot studies was to determine if the model circuit could
support behavioral associative learning, i.e. reduce the number of collisions by adaptively timed CRs,
under these less controlled, noisy real-world conditions.

Insert Fig. 9 about here.
5.3 Alterations of the model circuit

Two elements needed to be added to alleviate shortcomings of the model under real-world conditions. Firstly, in the early learning phase, a CR could be expressed after a US had already been triggered. In previous simulation studies these long latency responses would also occur, but were by definition excluded from the analysis. Their impact in robot experiments led to undesirable behavior that was prevented by adding an inhibitory connection from IO to CRpathway.

Secondly, the response timing acquired at the circuit level had to be matched to the required timing at the behavioral level. To compensate for transduction delays from the occurrence of a CR signal in CRpathway of the cerebellar circuit to the completion of the CR (turning response) a delay of 15 simulation timesteps was added to the inhibition from DN to IO. These examples illustrate how the real-world evaluation of a model may reveal limitations of a model not identified in simulations. Possible analogous neural substrates are explored further in the discussion.

5.4 Observable change in behavior

Associative learning mediated by the cerebellar model significantly alters the robot’s behavior in the obstacle avoidance task (Fig. 10). At the beginning of the experiment, when the behavior is determined by URs, the robot drives forward until it collides with the wall and only then performs a turn (Fig. 10.A). Later in the experiment the robot usually turns just before it would collide with the wall so that regions close to the wall are avoided (Fig. 10.B). Thus, associative learning reduces the number of collisions in the obstacle avoidance task. The robot performed significantly more successfully when exploiting the associative properties of the model, than when relying purely on its URs.

The position of the robot when CSs, USs, and CRs occurred in these two periods of the experiment can be examined at the circuit level (Fig. 10.C and 10.D). The first 10 CSs are all followed by a US which triggers a UR (Fig. 10.C). While the first seven CSs do not trigger CRs, later CSs, i.e. CS 8, 9 and 10, already elicit CRs at the circuit level. However, at the behavioral level these first CRs do not avoid the occurrence of a US. They are triggered with a long latency with respect to the CS (indicated by dotted lines), i.e. when the robot is already so close to the wall that a CR-turn cannot prevent the collision. After 30 CS events (Fig. 10.D), all CSs trigger CRs. The latencies of these CRs with respect to the CSs are much shorter than those of the first CRs. Thus, most turns are performed some distance from the wall, preventing a subsequent collision. For those anticipatory responses the CS is not followed by a US. Note that the CR is not triggered immediately after a CS is detected, but rather the CR latency
is adjusted with respect to the CS in a way that the CR-turn just prevents the collision-US.

Insert Fig. 10 about here.

5.5 The timing of CRs

The increase in the performance supported by the model can be explained by the changes in ISI (or CS-US interval) and CR-latency (or CS-CR interval) over the course of an experiment on a trial by trial basis (Fig. 11 and 12). At the beginning of an experiment, when the behavior of the robot is purely driven by URs, the CS is generally followed by the US and the ISIs range from 58 to 65 simulation timesteps (Fig. 12.A). The first CR is triggered with a long latency with respect to the CS, i.e. 63 simulation timesteps. Because such long-latency CRs cannot avoid the collision with the wall the next few CSs are still followed by USs. As a result of LTD caused by these reinforced CSs, the CR latency further decreases, until most CRs prevent the occurrence of a US. Thus, associative learning leads to the expression of CRs, which prevent the occurrence of most USs. The strong decrease in CR latency at the beginning of the experiment is followed by slight fluctuations in the CS-CR interval (Fig. 11). If consecutive CSs are not followed by a US, there is a gradual increase in the CS-CR interval (Fig. 12.B). This increase is due to the accumulative effect of LTP induced by several unreinforced CSs (as discussed for Fig. 6.B). However, if a CS is followed by a US there is a strong decrease in the CS-CR interval (Fig. 12.C) due to the induced LTD. Thus, the CR latency is constantly adapted to the current experiences in the environment. The ISIs occurring later in the experiment are generally shorter than those in the beginning of the experiment. The timing of the CRs is at first suitable to avoid USs for long ISIs, which occur primarily when the robot drives perpendicularly toward the wall (i.e. if its trajectory forms an angle of approximately 90 degrees with the tangent of environment, see Fig. 9). USs for shorter ISIs, i.e. those occurring with more shallow angles of approach, can only be avoided with lower synaptic weights and thus require more LTD. It is mostly the few remaining USs occurring under short ISIs that maintain the short CR latency via the induction of LTD.

Insert Fig. 11 about here.

Insert Fig. 12 about here.
5.6 Avoidance of USs

In Fig. 11 and 12 all CRs are plotted that were triggered at the circuit level. Although after the rapid learning phase every CS generally elicits a CR, some CRs do not prevent the occurrence of a US. To obtain a more meaningful evaluation of the performance in the obstacle avoidance task, we introduced the measure of effective CRs, which includes only CRs that prevent the US occurrence (Fig. 13). In unconditioned reflex driven behavior generally every CS is followed by a US. The percentage of effective CRs is equivalent to the percentage of USs that could be prevented compared to UR-driven behavior. After the rapid learning phase the percentage of effective CRs per block fluctuates between 70% and 100%, meaning that between 7 to 10 out of 10 expected USs can be anticipated. Over the whole experiment approximately 80% of the US expected for UR-driven behavior were successfully anticipated by the model. As in simulated experiments, the learning curve is of S-shape, indicating a rapid initial learning phase followed by fluctuations around asymptotic performance.

Insert Fig. 13 about here.

5.7 Generalization of Results

Simulated conditioning experiments are deterministic and give exactly the same learning curves when repeated. Successive runs of a robot experiment in the real world differ, in particular due to the variations that occur in the ISI distribution. To assess if there were clear trends in the learning performance we studied the averaged data of five experiments (Fig. 14).

The average number of effective CRs over blocks (of 10 CSs) shows an initial fast learning phase followed by a stable phase with much higher values of the percentage of effective CRs (Fig. 14.A). On average about 75% of the USs can be anticipated after the rapid learning phase. The changes of the average CS, US and all CR occurrences over time similarly illustrate an increase in the number of CR occurrences followed by a decrease in the number of US occurrences (Fig. 14.B). After a initial rapid learning phase, every CS triggers a CR and USs occur on average at an approximately constant rate which is again significantly lower than when behavior is reflex-driven. The robot travels less distance until the detection of the next CS because areas close to the wall are avoided. This causes a slight increase in the number of CS occurrences over time. To illustrate average changes in CR latency and ISI, the CS-CR interval and the CS-US interval were plotted over blocks of 10 CSs (Fig. 14.C). As previously
discussed, the average ISI decreases slightly over the course of the experiment, because those USs that would occur for long ISIs can be avoided most effectively. The CR latency with respect to the CS decreases quickly at the beginning of the experiment, but stabilizes after a few blocks. The final adapted CS-CR interval is approximately 15 simulation timesteps shorter than the ISI of the remaining CS-US pairs. This interval is equivalent to the time required from the occurrence of a CR at the circuit level to the performance of a complete CR-turn. The averaged variables plotted show little variation (in their minimum and maximum values), indicating that the course and the overall effect of learning is similar for different runs of an experiment. Thus, the learning performance previously discussed for one long experiment (Fig. 11, 12, 13) can be generalized.

Insert Fig. 14 about here.

5.8 Shifts in ISI distribution

The next experiment was designed to test if the timing of CRs could be adapted to environmental changes that cause major shifts in occurring ISI ranges (Fig. 15). These ISI shifts were induced by changing the bar widths of the pattern of the environment border. The wider the bar width of the pattern, the further from the wall the spatial-frequency CS is detected and thus the larger the occurring ISIs. In particular, a bar widths of 9.5 mm, 11 mm and 12.5 mm resulted in average ISIs of approximately 39, 48 and 56 simulation timesteps, respectively. A change from a bar width of 11 mm to 12.5 mm was used to cause a large increase in the average ISI after 20 000 simulation timesteps. A change from a bar width of 12.5 mm to 9.5 mm resulted in a large decrease in the average ISI after 40 000 simulation timesteps.

The average results of five experiments show three distinct plateau values in the average ISI resulting from the three different patterns used (Fig. 15.B). After less than 4 blocks the CR latency is adapted to the new ISI range, i.e. approximately 10-15 simulation timesteps shorter than the average CS-US interval. The sudden increase in the average ISI after 20 000 simulation timesteps results in a short-term decrease of the number of USs detected per time bin (Fig. 15.A). The circuit was previously trained to shorter ISIs and thus immediately after the pattern transition, CRs are triggered early with respect to the new ISI. Thus the first CRs following the pattern transition are executed a significant distance from the wall, preventing almost all USs. However, the consecutive unreinforced CSs induce LTP. This leads to a slow increase in the CR latency with respect to the CS until again a stable number of USs occur per time bin.
In principle, this process is equivalent to a slow extinction of the previously acquired timing of a CR. If the ISIs suddenly decrease (after 40 000 simulation timesteps), the learning process is equivalent to that during acquisition. Immediately after the pattern transition, the latency of the previously acquired CR is not sufficient to prevent the occurrence of USs, since CRs would be triggered too late. As a result, immediately after the second pattern transition the number of detected USs increases. However, reinforced CSs trigger LTD, leading to a decrease in the CR latency with respect to the CS. These results show that the continuous interaction of LTD and LTP leads to a circuit that can within a few blocks of training readapt the timing of the CR to major changes in the environment.

Insert Fig. 15 about here.

6 Discussion

We presented a neural model which includes anatomical and physiological constraints of the cerebellar microcircuit while constituting a sufficiently reduced description to allow real-time simulations combined with real-world devices. In simulated classical conditioning experiments we demonstrated that the model supports acquisition and extinction of accurately, adaptively timed CRs. This performance is controlled by a limited number of model parameters, i.e. the rate constants for LTD and LTP and persistence of the CS trace. Moreover, using a mobile robot we demonstrated that the model microcircuit can support effective associative learning under less controlled, real-world conditions.

6.1 Models on cerebellar information processing

Since Marr [Marr, 1969] and Albus [Albus, 1971] proposed functional models of the cerebellum based on its unique anatomical organization more than 30 years ago, many computational models of cerebellar mediated classical conditioning have been suggested (for a recent review see [Medina and Mauk, 2000]). These models range from algorithmic, functional top-down models (e.g. [Moore and Choi, 1997]) to detailed bottom-up models (e.g. [Medina et al., 2000, Fiala et al., 1996]). Our model constitutes a compromise between these two approaches, in that it represents an abstract and functional implementation of assumptions on cerebellar mediated learning that are strictly based on biological findings. Our goal was to design a minimal model which extracts the principles of cerebellar information processing and to
understand how certain aspects of the underlying learning mechanism affect the learning performance. Thus, the purpose of our studies was neither to mimic detailed dynamics or mechanisms of the underlying cellular responses as closely as possible nor to generate learning curves that match exactly those obtained in behavioral studies. This explains why we did not attempt to match simulation time to time measured in biological experiments.

Many of the assumptions embedded in our model have also been included in other models on cerebellar mediated learning. Both bidirectional synaptic changes of the synapses formed between parallel fibers and Purkinje cells and negative feedback control of these synaptic changes are common to several recent models in this context [Spoelstra et al., 2000, Medina et al., 2000, Ghuck et al., 2001].

In particular, a model proposed by Barto et al. that also focuses on a single Purkinje cell, shows at a first glance several similarities to the model described in this paper [Barto et al., 1999]. Initially, Barto and Sutton applied reinforcement learning algorithms established in the field of machine learning to models on classical conditioning [Barto and Sutton, 1982]. In their more recent work, they attempt to match functional aspects of temporal difference algorithms to the cerebellar circuitry [Sutton and Barto, 1990, Barto et al., 1999]. As in our model, an error signal is signaled by the climbing fibers and drives a temporally asymmetric form of plasticity at the synapses formed between parallel fibers and Purkinje cells. Based on earlier work by Klopf [Klopf, 1982] this asymmetry is mediated by an eligibility trace in parallel fibers, similar to our CS-trace. However, while the amplitude of the eligibility trace in the model of Barto et al. defines the amount of synaptic change induced, the CS-trace in our model only determines if the learning rules for LTD and LTP are activated. The model suggested by Barto et al. focuses at the cerebellar control of movements and includes the cerebellar interaction with a (formalized) premotor network. The model requires complex and predefined parallel fiber inputs which encode specific variables, such as the current position and resting position of the simulated limb. The inversion of the inhibitory output of Purkinje cells to a motor command signal is achieved by a corticorubro-cerebellar network, while in our model this inversion is caused by the rebound depolarization in the deep nucleus. The model output is not stabilized due to the activity in the negative feedback loop formed between inferior olive, cerebellar cortex and deep nucleus as in our model, but by bipolar climbing fiber error signals, i.e. positive and negative signals induce left- or rightward corrections of movements, respectively. In our model the climbing fiber signal is more simple, signaling the occurrence of an unpredicted event. Reinforcement models are popular among learning theorists, but a discrete input space and a bipolar error signal are strong assumptions [Schultz et al., 1997, Schultz and Dickinson, 2000]. Our
model shows that the cerebellar component of classical conditioning can be accounted for without making these assumptions.

6.2 Interaction of components

Although we did not include plasticity within the cerebellar nucleus in our model our studies demonstrate that in order to understand cerebellar mediated timing of CRs both cortical and nuclear components need to be taken into account. The expression of the CR depends on the rebound excitation in DN. The timing of this DN response is defined by the onset of the acquired pause in PU activity following CS presentation which is modulated by LTD and LTP of the pf-PU-synapse. However, in the absence of DN-IO inhibition, these synaptic changes would not lead to stable CR timing. Presentation of reinforced CSs after the acquisition of a correctly timed CR would continue to induce LTD and further reduce the CR latency. Hence, to stabilize the correct duration of the acquired pause in PU activity, LTD must be prevented once a correctly timed CR is expressed. This is achieved by the negative feedback from DN to IO since LTP if US-related cf-activity is prevented. Thus, the negative feedback loop formed between microcomplexes of interconnected groups of cells in the inferior olive, Purkinje cells and cells in the deep nucleus is crucial for the stabilization of the CR timing.

6.3 Implication of the learning mechanism

The implemented learning mechanism is based on the continuous interaction of LTD and LTP. This leads to two important features of the asymptotic learning performance of the model. Firstly, while the timing of CRs is in general adapted to the training ISI, there will always be slight fluctuations. Secondly, some USs will intermittently be anticipated incorrectly. If the synaptic weight changes due to LTD are relatively strong in comparison to LTP, learning is fast and few CSs will fail to elicit a CR. However, this also means that extinction of a previously learned CR and readaptation to long ISIs can only be acquired slowly. Thus, there is a trade-off between the adaptability of the circuit and the stability of the its performance.

6.4 A functional analysis of model elements

Our modeling approach allows us to ascribe functional roles to certain model elements. In our model, the cf signals the occurrence of a prediction error to PU (as suggested in [Schultz and Dickinson, 2000,
Bloedel and Bracha, 1998), while activity in the deep nucleus can be interpreted as an internal prediction of the occurrence of a US. The integration of signals pertaining to the prediction and occurrence of the US takes place in the IO. It has been argued that such integration of inhibitory deep nucleus and excitatory US-related signals could occur at the level of the olivary glomeruli [De Zeeuw et al., 1998]. This is in accord with findings that US-evoked activity in the inferior olive decreases during the acquisition of a CR and increases again following the extinction of a CR [Hesslow and Ivarsson, 1996, Sears and Steinmetz, 1991, Medina et al., 2002]. LTP and LTD serve functionally as a continuous check for the current internal US-prediction and can only constitute a highly adaptive functional learning mechanism under the control of the nuclear-olivo-cortical feedback loop [Hesslow and Ivarsson, 1996]. The control of the reinforcing signal by the negative feedback from the deep nucleus to the inferior olive could explain why cerebellar mediated classical conditioning does not obey the law of effect [Thorndike, 1898, Gardner and Gardner, 1988]. Because the US-related signal is blocked off by deep nuclear inhibition of the inferior olive, the timing of an acquired eye-blink CR is stabilized not only when the behavioral CR actively prevents the aversive US (i.e. eyelid closure to avoid airpuff US) but also if the US can not be avoided (i.e. electric shock US) [Gormezano et al., 1983].

6.5 Associative learning vs. simulated conditioning experiments

The strength of our approach lies in the possibility to elucidate how the suggested underlying mechanisms at different levels of description could interact and scale up to behavioral learning. Models of cerebellar learning have been evaluated using real-world devices in the past [Van der Smagt, 2000], e.g. to study trajectory planning [Kawato, 1999] or smooth pursuit [Huang et al., 2000, Coenen et al., 2001]. However, in these studies, the cerebellar circuitry modulates motor commands that are generated elsewhere and parallel fiber signals carry complex, prewired information. In our model of cerebellar mediated classical conditioning, the cerebellum receives simple CS-representations and triggers the expression of motor responses. This is in accord with data demonstrating that motor CRs can be learned in decerebrated animals [Mauk and Thompson, 1987].

Associative learning when CS and US occurrences arise from the interaction of the learning system with its environment, differs in at least two important aspects from (simulated) classical conditioning experiments. Firstly, the ISIs vary. This variability can be attributed to the interaction of the robot with its environment (i.e. the angle at which the robot approached the wall), to intrinsic properties of the behaving system (e.g. noise in sensor sampling), and to the learning process itself. In the simulated
classical conditioning experiments, the required CR-timing was well defined, i.e. the CS has to trigger a CR with a latency just smaller than the ISI. However, in robot studies, successful learning was defined by the avoidance of collision-USs, and as a result of unpredictable ISI variations, the required CR-timing was less clearly defined. Secondly, in simulation studies, the reinforcing ef-signal is entirely controlled by the inhibition of IO by DN. However, in robot studies the expression of a CR-turn may in addition actively prevent the occurrence of a collision-US at the behavioral level. Despite these differences in the learning conditions, the learning behavior of the circuit in robot experiments is in many ways similar to that observed in simulated conditioning experiments. There is an initial rapid learning phase after which the performance reaches asymptotic levels. However, in robot studies, strong and irregular fluctuations in the CR-timing can be observed. These fluctuations illustrate how the internal US prediction is constantly adapted to recent experiences in the environment. This allows the adaptation of the CR timing to minor variability or noise and to major shifts in the ISI distribution. A gradual decrease of the ISIs on non-successful trials was observed over time. This can be understood in terms of the learning mechanisms implemented in our model. Due to the gradual acquisition of a pause in PU activity, at first only US occurrences with long ISIs can be prevented. Hence, only after these events are captured by the learning system can shorter ISIs be acquired. In summary, our robot experiments demonstrate that the mechanisms of cerebellar conditioning in the context of the nuclear-olivo-cortical loop support robust and adaptive learning in a real-world system which imposes variable ISIs. The adaptation of the CR-latency is predominantly driven by short latency USs that were not anticipated correctly.

6.6 Alterations to the model circuit

In order to adapt our model of the cerebellar microcircuit to the performance in the real-world two functional elements had to be added. Firstly, we observed that in the initial learning phase CRs could be expressed after a US had already triggered a UR. However, animal studies indicate that the expression of CR and UR may overlap [Gormezano et al., 1983], but not that a CR occurs after a UR. This suggests that the cerebellar microcircuit and/or its periphery includes mechanisms that prevent the expression of a CR after a UR. In our model this issue was solved functionally by including an inhibitory connection from IO to CRpathway preventing the expression of CRs after US-related ef-activation. This solution is in accord with the notion that climbing fiber activity may prevent rebound excitation of cells in the deep nucleus [Hesslow, 1994b]. In particular, it has been shown that single pulse cortical stimulation following a train stimulation can inhibit the expression of a CR. Although a complex spike initially triggers a short
temporary pause in simple spike activity, this pause is in most cells followed by a significant increase in simple spike activity [Sato et al., 1992]. It remains to be studied if climbing fiber activation could thereby interfere with rebound depolarization of cells in the deep nucleus, before a Na\(^+\) burst is elicited.

Secondly, when examining the performance of the circuit at the behavioral level, transduction delays between the robot and the model circuit had to be taken into account. In particular, there is a significant delay between the CR triggered at the level of DN and the action of the effectors, i.e. the complete execution of a motor-CR. Similarly, physiological recordings show that activity of cells in deep nucleus occurs approximately 40-60 ms before a behavioral CR is observed [McCormick and Thompson, 1984]. Hence, the internal timing acquired at the circuit level has to be matched to the peripheral timing required at the behavioral level. In our model this was achieved functionally by adding a delay in the projections from DN to IO. Spoelstra et al. [Spoelstra et al., 2000] also added a delay to the inhibition of the deep nucleus to the inferior olive in their model of cerebellar mediated control of movements to align the cerebellar output with the error signal within the olivo-cortico-nuclear loop. What the biological substrate for such a delay could be is unclear and needs further experimental analysis.

6.7 Two modes of operation

One critical assumption embedded in our model, is the operation of PU in two modes: a default spontaneous mode and a CS-mode. During the spontaneous mode, DN is tonically inhibited by the spontaneous activity of PU, while CS-related input drives PU output in the CS-driven mode. Recently Thompson and associates studied the effect of two different types of Purkinje cell inhibition onto cells in the deep nucleus, namely basal and stimulus-activated inhibition [Bao et al., 2002]. The learning mechanism embedded in our model is in good accord with their findings that basal inhibition modulates CR expression, while CS-activated inhibition is required for the proper timing of the CR. While there is no physiological evidence that Purkinje cells may switch between two modes of operation, dual response properties have recently been described for other cells, such as deep nuclear cells [Aizenman et al., 1998, Aizenman and Linden, 1999] and thalamic relay cells [Sherman, 2001]. It remains to be studied if the activity of cortical interneurons or some intrinsic mechanism could mediate such a switch in Purkinje cell operation following a CS.
6.8 Future work

Our model focused on the description of a single microcircuit in a microcomplex. In future work we will investigate how a collection of these microcircuits can constitute a complete microcomplex. This requires that the peripheral signals feeding into a microcomplex are more explicitly modeled [Hansel et al., 2001]. In our current model a representation of the CS is readily available to the circuit. However, under natural learning conditions such a representation of the CS may first have to be acquired or enforced. In the study of classical conditioning two distinct phases of learning are distinguished [Lennartz and Weinberger, 1992, Mintz and Wang-Ninio, 2001]. In a first fast, non-specific phase an emotional response is acquired by a process involving the amygdala. In a second, slow phase discrete motor responses specific to the US are acquired in the cerebellum. We have proposed that the early, unspecific learning phase serves to identify a CS [Verschure and Voegtlin, 1999]. For instance, it has been shown that the primary auditory cortex quickly enlarges the representation of tones that are paired with US-derived signals [Kilgard and Merzenich, 1998]. We have previously presented a biophysically detailed model that can account for this aspect of auditory conditioning [Sanchez-Montanes et al., 2000]. In future work we will interface our model of CS identification with the model presented here to realize a more complete account of the neuronal systems implementing the two-phase theory of classical conditioning.

Acknowledgments

We are grateful to Professor David G. Lavond and our reviewers for valuable discussions and suggestions. This study was supported by the Volkswagen Foundation (I/97036 to P.F.M.J. Verschure).

7 Abbreviations

The abbreviations used throughout the text are given in table 1, the abbreviations used to refer to model elements are given in table 2.
Table 1: Abbreviations.

<table>
<thead>
<tr>
<th>abbreviation</th>
<th>for</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>conditioned response</td>
</tr>
<tr>
<td>CS</td>
<td>conditioned stimulus</td>
</tr>
<tr>
<td>IP3</td>
<td>inositol 1,4,5-triphosphate</td>
</tr>
<tr>
<td>ISI</td>
<td>inter stimulus interval</td>
</tr>
<tr>
<td>LTD</td>
<td>long-term depression</td>
</tr>
<tr>
<td>LTP</td>
<td>long-term potentiation</td>
</tr>
<tr>
<td>NM(R)</td>
<td>nictitating membrane (response)</td>
</tr>
<tr>
<td>UR</td>
<td>unconditioned response</td>
</tr>
<tr>
<td>US</td>
<td>unconditioned stimulus</td>
</tr>
</tbody>
</table>
Table 2: **Model elements.**

<table>
<thead>
<tr>
<th>abbreviation</th>
<th>representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>climbing fiber</td>
</tr>
<tr>
<td>CRpathway</td>
<td>CR pathway downstream of deep nucleus</td>
</tr>
<tr>
<td>CSpathway</td>
<td>CS pathway upstream of pons</td>
</tr>
<tr>
<td>DN</td>
<td>deep nucleus</td>
</tr>
<tr>
<td>GR</td>
<td>granule cell</td>
</tr>
<tr>
<td>I</td>
<td>cerebellar cortical interneurons</td>
</tr>
<tr>
<td>IO</td>
<td>inferior olive</td>
</tr>
<tr>
<td>mf</td>
<td>mossy fiber</td>
</tr>
<tr>
<td>pf</td>
<td>parallel fiber</td>
</tr>
<tr>
<td>PO</td>
<td>pons</td>
</tr>
<tr>
<td>PU</td>
<td>Purkinje cell</td>
</tr>
<tr>
<td>PU-SO</td>
<td>PU compartment: soma</td>
</tr>
<tr>
<td>PU-SP</td>
<td>PU compartment: spontaneous activity</td>
</tr>
<tr>
<td>PU-SYN</td>
<td>PU compartment: synaptic regions</td>
</tr>
<tr>
<td>USpathway</td>
<td>US-pathway upstream of inferior olive</td>
</tr>
<tr>
<td>βSYN</td>
<td>model parameter: persistence of CS trace</td>
</tr>
<tr>
<td>ε</td>
<td>model parameter: rate constant for LTD</td>
</tr>
<tr>
<td>η</td>
<td>model parameter: rate constant for LTP</td>
</tr>
</tbody>
</table>
Appendix

Soft- and Hardware The model was implementing using the neural network simulation software IQR421 [Bernardet et al., 2001] (non-commercial, developed by P. Verschure) running in a Linux environment (Redhat 6.1). The simulated conditioning experiments ran on one computer (Intel Pentium III, 650MHz, USA). In robot experiments the processes controlling the cerebellar model, the robot, the camera mounted on the robot and the tracking camera were running distributed on four such machines.

Connectivity Each described model element constitutes a groups of 100 cells. All cell groups were connected one-to-one, except for PU-SO for which each cell received input from all PU-SYN cells. Thus, each PU receives input from only one ef but multiple pf. While the set of experiments described in this paper could have been mediated by a single PU cell with its afferents and efferents, the complexity of the circuit has been exploited in subsequent experiments involving multiple CS-US pairs.

Parameter specification The values of the cell parameters used is given in table 3 and 4. The cell types refer to possible settings in IQR421. A rebound threshold, θ^R, of -0.19 and a rebound potential, μ, of 1.5 were used for the simulation of the DN. The hyperpolarized membrane potential was clamped at -0.23. With these parameters DN emits spikes 8 time steps after its disinhibition.

The value of w_{ij}^{max}, denoting the maximal (and initial) strength of the connection between the parallel fiber and Purkinje cell, was set to 0.4. The values E_{min}^{LTP}, E_{max}^{LTP} were set to 1.1 and 1.5 and the values for E_{min}^{LTP}, E_{max}^{LTP} were set to 0.05 and 0.054. If not explicitly denoted otherwise the values of the β of PU-SYN, the LTD rate, ε, and the LTP rate, η, used in the circuit tested in stimulated classical conditioning experiments were 0.985, 0.985 and 0.0002, respectively. Having established the relationship between the model’s parameters and performance in simulation studies, the model’s parameters could be chosen to allow for the desired fast acquisition and extinction characteristics for a given ISI. For the robot experiments presented the values of the β of PU-SYN, the LTD rate, ε, and the LTP rate, η were 0.972, 0.95 and 0.006 (Fig. 10 - 14) or 0.972, 0.94 and 0.002 (Fig. 15), respectively.
Table 3: **Model Parameters.** Description of the neuron types and the values of parameters (weight to connecting cell groups, \(w\), excitatory gain, \(\gamma^E\), inhibitory gain, \(\gamma^I\), firing threshold, \(\Theta^A\), and membrane persistence, \(\beta\)).

<table>
<thead>
<tr>
<th>Model element</th>
<th>type</th>
<th>(w)</th>
<th>(\gamma^E)</th>
<th>(\gamma^I)</th>
<th>(\Theta^A)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO</td>
<td>IntegrateFire</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>GR</td>
<td>IntegrateFire</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>IO</td>
<td>IntegrateFire</td>
<td>1.5</td>
<td>1</td>
<td>3</td>
<td>0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>I</td>
<td>IntegrateFire</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0.175</td>
<td>0.1</td>
</tr>
<tr>
<td>DN</td>
<td>Rebound</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0.5</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table 4: **Model Parameters of Purkinje cell.** Description of the neuron types and the values of parameters used for implementation of the three compartments of the modeled Purkinje cell (weight to connecting cell groups, \(w\), excitatory gain, \(\gamma^E\), inhibitory gain, \(\gamma^I\), firing threshold, \(\Theta^A\), and membrane persistence, \(\beta\)).

<table>
<thead>
<tr>
<th>group</th>
<th>type</th>
<th>(w)</th>
<th>(\gamma^E)</th>
<th>(\gamma^I)</th>
<th>(\Theta^A)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU-SP</td>
<td>Spontaneous</td>
<td>0.1</td>
<td>-</td>
<td>3</td>
<td>0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>PU-SO</td>
<td>IntegrateFire</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>PU-SYN</td>
<td>LinearThreshold</td>
<td>changing</td>
<td>1</td>
<td>-</td>
<td>0.15</td>
<td>var.</td>
</tr>
</tbody>
</table>
References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

A Figure legends

Fig. 1: The learning mechanism embedded in the cerebellar microcircuit. Excitatory connections between cells are indicated with arrows, inhibitory connections are indicated with bars. Boxed traces represent activity in model elements. A: Purkinje cells (PU) receive CS- and US-related input via parallel fibers (pf) and climbing fibers (cf), respectively. LTD and LTP of synapses formed between pf and PU depend on the temporal pattern of pf- and cf-input. PU inhibits cells in the deep nucleus cells (DN), which in turn inhibit cells in the inferior olive (IO) that give rise to cf. Thus, IO, PU and DN form a negative feedback loop. DN activity controls the reinforcing pathway by preventing US-related cf-activity through IO inhibition and it triggers the expression of CRs. B: In a naive circuit PU tonically inhibits DN and no CR is expressed. LTD is induced if a cf-signal coincides with a prolonged response in the PU dendrite due to a previous pf-signal. C: In a trained circuit there is a pause in PU spiking following the CS presentation. During this disinhibition DN repolarizes and triggers a CR. DN inhibition to IO prevents US-induced cf-activation. LTP is induced because the pf-signal is not reinforced by a cf-stimulus.

Fig. 2: The anatomy of the model circuit. As discussed in Fig.1 CS- and US-related input converge on PU and the IO, PU and DN form a negative feedback loop. The model elements PO, GR and I represent pontine nucleus, granule cells and inhibitory interneurons in the cerebellar cortex. The model elements CPathway, UPathway and CRpathway stand for the pathways upstream from the pontine nucleus and the inferior olive and downstream from the deep nucleus, respectively. PU comprises three model compartments: PU-SYN, PU-SP and PU-SO, accounting for responses in synaptic regions, the spontaneous activity and the somatic regions of Purkinje cells respectively. The CS-related input is conveyed to GR via mossy fibers (mf) originating in PO. Parallel fibers (pf) form excitatory synapses at PU-SYN, while PU-SO receives US-related input via climbing fibers (cf). I receives input from pf and inhibit PU-SP. Because we focused on the functional role of the cerebellar cortex only, CS- and US-related signals, conveyed to the deep nucleus via collaterals of mossy fibers and climbing fibers respectively, were omitted.

Fig. 3: Learning related response changes in the model. The most relevant neural responses to a CS-US pair (ISI of 100 timesteps) are presented for a trial before significant learning occurred (A) and when correctly timed CR is expressed (B). A CS-related pf-signal (1) evokes a prolonged response in PU-SYN, the CS-trace (3). While there is an active CS-trace, I is active (4) and inactivates SP (5). In the CS-mode the membrane potential of PU (6) is driven by the relayed CS-input. Only in this CS-mode
can synaptic changes be induced and a pause in PU spiking can occur. **A:** In Trial 1 the US-related cf-input (2) occurs while there is an active CS-trace (3), in this case following the CS-related pf-input (1) with an ISI of 100 simulation timesteps. These conditions induce LTD (not illustrated in the figure). Because PU membrane potential remains above spiking threshold, PU is active (7) and supplies constant inhibition to DN while in the CS-mode. Thus, DN can not repolarize (8) and remains inactive (9) so that no CR is triggered (10). **B:** Later in the experiment (Trial 51), the synaptic weight of the pf-PU-synapse has been reduced due to previous LTD. As a result, PU potential (6) falls below spiking threshold, which leads to a pause in PU spiking (7). DN membrane potential repolarizes (8), so that rebound spikes are emitted (9). This rebound excitation triggers a CR (10). DN inhibition of IO prevents US-related cf-activity (2). Thus, although a US signal is still presented to the circuit, the reinforcing US-pathway is blocked. These conditions induce LTP (not illustrated in the figure). The direction of change in the synaptic efficacy following a CS is thus dependent on the occurrence of a US as well as on the activity in the olivo-cortical-nuclear loop.

Fig. 4: The rate constant for LTD, ε, determines the speed of the acquisition of a CR. Comparison of the acquisition behavior of circuits with values for ε of 0.965 (dashed line, diamonds), 0.975 (solid line, stars) and 0.985 (dashed-dotted line, circles). The percentage of CRs is plotted over ten blocks of 10 CSs of an acquisition experiment for an ISI of 100 simulation timesteps.

Fig. 5: The rate constant for LTP, η, determines the speed of the extinction of a CR. Comparison of the extinction behavior of circuits with values for η of 0.0001 (dashed line, diamonds), 0.0002 (solid line, stars) and 0.0004 (dashed-dotted line, circles). Initially, the weight of the pf-PU-synapse was set to 0.2052 allowing for the expression of a CR for a training ISI of 100 simulation timesteps. The percentage of CRs is plotted over 10 blocks of unreinforced CSs.

Fig. 6: Change of the PU response duration to a CS. **A:** The excitatory response duration (in simulation timesteps) is plotted over 100 trials of an acquisition experiment for an ISI of 60 simulation timesteps (indicated with dotted line). Three circuits varying in the persistence of their CS-trace, i.e. β^{SYN} of 0.970 (dashed line), 0.985 (solid line) and 0.990 (dashed-dotted line), are compared. For explanation of labels 1 and 2 see text. **B:** Close-up of fluctuations in PU response duration after a CR has been acquired ($\beta^{SYN} = 0.985$). See text for explanation.

Fig. 7: The robot and its environment. **A:** Khepera microrobot. The robot consists of a base plate with two motors and eight IR sensors, the processor module and an additional camera board carrying a color camera. The robot has a diameter of 50 mm and a height of 80 mm. It was tethered
to the host PC via a 2 m long cable. To allow the recording of its trajectories, an IR diode was mounted on the robot. **B: The robot environment.** The robot experiments were performed in a circular arena with a diameter of 60 cm, surrounded by a 15 cm high Plexiglas wall. Paper with a pattern of vertical, equally sized black and white bars was placed against the wall. Patterns with bar widths of 9.5 mm, 11 mm and 12.5 mm were used in the experiments.

Fig. 8: Detection of CS and US. Eight IR sensors constitute the proximal sensors of the robot, the camera constitutes the distal sensor. **A:** A CS (= a specific spatial frequency in the visual field of the camera) is detected a certain distance from the wall. **B:** A US (= the stimulation of the two frontal IR sensors) is detected directly at the wall.

Fig. 9: Region in which a CS can be detected for the pattern with a bar width of 9.5 mm. Half of the environment is displayed; numbers indicate the distance (in cm) from the center of the environment on the midline. If and where a CS can be detected (indicated by banana shaped region) depends on the angle of approach of the robot to the wall. When approaching the wall with an angle steeper than approximately 60° no CS is detected. The further from the wall the CS occurs, the longer the ISI.

Fig. 10: Learning performance of the robot. **Top row:** Trajectories of the robot, arrows indicate beginning of trajectories. **A:** Beginning of the experiment, (CS 1-10, occurring approximately after 0-5 min). **B:** Later in the experiment (CS 31-40, occurring approximately after 15-20 min). **Bottom row:** The same periods of the experiment examined at the circuit level. The symbols indicate the position of the robot where CSs (diamonds), USs (stars) and CRs (circles) occurred. CS-US pairs are connected by dashed lines, CS-CR pairs are connected by dotted lines. **C:** CS 1-10. **D:** CS 31-40.

Fig. 11: Changes in the ISI and CR latency during an acquisition experiment. The experiment ran for 60 000 simulation timesteps (approximately 120 min) using a bar width of 12.5 mm. The CS-US interval (= ISI, stars) and the CS-CR interval (= CR latency, circles) are measured in simulation timesteps and plotted over the 340 CSs that occurred in the experiment.

Fig. 12: Detailed plots of the same experimental data as depicted in Fig. 11. CS-US intervals (= ISIs) are indicated with stars, CS-CR intervals (= CR latencies) are indicated with circles. **A:** Initial, rapid learning phase. **B:** Period in which no USs occurred. **C:** Effect of USs occurrences.

Fig. 13: Effective CRs (= CRs that prevent the occurrence of a US). Percentage of effective CRs per block of 10 CSs during the experiment illustrated in Fig. 11 and 12.

Fig. 14: Average of 5 experiments to illustrate trends in learning behavior. Experiments
lasted 20 000 simulation timesteps (approximately 40 min) in an environment with a bar width of 12.5 mm and led to a minimum of 110 CSs. Error bars give the minimum and maximum values of five data sets. **A**: Average percentage of effective CRs (= CRs that prevented the occurrence of a US) over 10 blocks of 10 CSs. **B**: Number of CS occurrences (diamonds), US occurrences (stars) and all CR occurrences (circles) plotted over time-bins of 2000 simulation timesteps (ts). **C**: ISI (= CS-US interval, stars) and CR latency (= CS-CR interval, circles) over blocks of 10 CSs.

Fig. 15: Adaptation to changes in the ISI range. Experiments lasted 60 000 simulation timesteps (approximately 120 min). Error bars give the minimum and maximum values of the five data sets. **A**: Number of CS occurrences (diamonds), US occurrences (stars), and CR occurrences (circles) over time-bins of 2000 simulation timesteps (ts). The pattern of the environment was exchanged twice (indicated by solid, vertical lines): from bar widths of 11 mm to 12.5 mm after 20 000 simulation timesteps and from bar widths of 12.5 mm to 9.5 mm after 40 000 simulation timesteps. **B**: ISI (= CS-US interval, stars) and CR latency (= CS-CR interval, circles) over blocks of 10 CSs measured in simulation timesteps (ts). For all five experiments the transition of patterns took place between block 11 to 12 and 22 to 23 (indicated by dashed vertical lines).
Figure 1: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 2: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 3: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 4: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 5: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 6: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 7: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 8: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 9: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 10: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 11: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 12: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 13: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 14: Hofstötter et al., The Cerebellum in Action: A Simulation and Robotics Study
Figure 15: Hofstätter et al., The Cerebellum in Action: A Simulation and Robotics Study